Avocado Virt Test Compatibility Layer

Documentation
Release 92.0

Lucas Meneghel Rodrigues

Oct 19, 2021

Contents

About Avocado-VT

I.1 Aboutvirt-test
Getting Started

2.1 Imstalling Avocado-VT
2.2 Bootstrapping Avocado-VT
2.3 First steps with Avocado-VT
Writing Tests

3.1 TestProviders
3.2 Development workflow after the Repository Split . .
3.3 Writing your own avocado VT test
34 DefiningNew Guests
Install Optional Packages

41 FedoraandEL
42 Debian
Listing guests

Advanced Topics and Maintenance

6.1 Howtestsarerun
6.2 Cartesian Configuration
6.3 Building test applications
6.4 Networking
6.5 Performance Testing
6.6 Setup a virtual environment for multi host tests . . .
6.7 Multi Host Migration Tests
6.8 Links with downloadable images for virt tests
6.9 GlusterFSsupport
6.10 Setting up a Regression Test Farm for KVM
6.11 Installing Windows virtio drivers with Avocado-VT

6.12 Running QEMU kvm-unit-tests
6.13 ParallelJobs
6.14 Running in emulation mode (TCG)
6.15 Contribution and Community Guide
6.16 Experimental features

w W

~N N L

7 API Reference
7.1 virttest

8 Cartesian Config Reference

8.1 Cartesian Config
8.2 Indices and tables

Python Module Index

Index

81
81

133
133
179

181

183

Avocado Virt Test Compatibility Layer Documentation, Release 92.0

Contents:

Contents 1

Avocado Virt Test Compatibility Layer Documentation, Release 92.0

2 Contents

CHAPTER 1

About Avocado-VT

Avocado-VT is a compatibility plugin that lets you execute virtualization related tests (then known as virt-test), with
all conveniences provided by Avocado.

Its main purpose is to serve as an automated regression testing tool for virt developers, and for doing regular automated
testing of virt technologies (provided you use it with the server testing infrastructure).

Avocado-VT aims to be a centralizing project for most of the virt functional and performance testing needs. We cover:

¢ Guest OS install, for both Windows (WinXP - Win7) and Linux (RHEL, Fedora, OpenSUSE and others through
step engine mechanism)

* Serial output for Linux guests
* Migration, networking, timedrift and other types of tests
For the gemu subtests, we can do things like:
* Monitor control for both human and QMP protocols
* Build and use gemu using various methods (source tarball, git repo, rpm)
¢ Some level of performance testing can be made.

e The KVM unit tests can be run comfortably from inside virt-test, we do have full integration with the unittest
execution

We support x86_64 hosts with hardware virtualization support (AMD and Intel), and Intel 32 and 64 bit guest operating
systems.

1.1 About virt-test

Virt-test is the project that became Avocado-VT. It used to live under the Autotest umbrella, under:
http://github.com/autotest/virt-test

That repository is now frozen and only available at that location for historical purposes.

http://github.com/autotest/virt-test

Avocado Virt Test Compatibility Layer Documentation, Release 92.0

4 Chapter 1. About Avocado-VT

CHAPTER 2

Getting Started

The first step towards using Avocado-VT is, quite obviously, installing it.

2.1 Installing Avocado-VT

Avocado-VT is an Avocado plugin, therefore you are going to need both in order to be able to execute the tests.
Both are primarily written in Python, so a standard Python installation is possible and often preferable.

If you just want to use the plugin to run tests you might prefer to use packages from your system’s package manager
if available; this way non-python dependencies, esp. Avocado, are also taken care of automatically.

You can find more details about the Avocado installation here.

2.1.1 Installing via PIP

Pip is useful when it comes to python dependencies, but it fails in non-python ones. List of non-python requirements
based on Fedora package names is:

$ dnf install xz tcpdump iproute iputils gcc glibc-headers nc git python-netaddr,
—python-devel

Then you can get Avocado-VT via pip:

$ pip install git+https://github.com/avocado-framework/avocado-vt

Or by manually cloning it from github:

$ git clone https://github.com/avocado-framework/avocado-vt
$ cd avocado-vt
$ pip install

It’s recommended to use pip even for local install as it treats requirements differently and the use of python
setup.py install might fail.

https://avocado-framework.readthedocs.io/en/latest/guides/user/chapters/installing.html

Avocado Virt Test Compatibility Layer Documentation, Release 92.0

2.1.2 Installing via system package manager

Installing Avocado-VT on Fedora or Enterprise Linux is a matter of installing the avocado-plugins-vt package. Install
it with:

$ yum install avocado-plugins-vt

Which takes care of all the dependencies (python and non-python ones).

2.1.3 Setup Avocado-VT with sources

If you intend use avocado from sources, clone it into the same parent directory as Avocado sources and use make
1link from the Avocado sources directory. Details about this can be found here.

2.2 Bootstrapping Avocado-VT

After the package, a bootstrap process must be run. Choose your test backend (qemu, libvirt, v2v, openvswitch, etc)
and run the vt-bootstrap command. Example:

’$ avocado vt-bootstrap —--vt-type gemu

Note: If you don’t intend to use JeOS and don’t want to install the xz you can use avocado vt-bootstrap
-—vt-type gemu —--vt-guest-os $0S_OF_YOUR_CHOICE which bypasses the xz check.

The output should be similar to:

12:02:10 INFO
12:02:10 INFO
12:02:10 INFO

| gemu test config helper

|

|
12:02:10 INFO |

|

|

|

1 - Updating all test providers
12:02:10 INFO

12:02:10 INFO
12:02:10 INFO

2 — Checking the mandatory programs and headers
/bin/xz OK
/sbin/tcpdump OK

12:02:11 INFO
12:02:11 INFO
12:02:11 INFO
12:02:11 INFO
12:02:11 INFO
12:02:11 INFO

/usr/include/asm/unistd.h OK

3 - Checking the recommended programs
/bin/gemu-kvm OK
/bin/gemu—-img OK
/bin/gemu-io OK

12:02:33 INFO | 7 - Checking for modules kvm, kvm-intel
12:02:33 DEBUG| Module kvm loaded
12:02:33 DEBUG| Module kvm-intel loaded
12:02:33 INFO |
12:02:33 INFO | 8 - If you wish, you may take a look at the online docs for more info
12:02:33 INFO |

|

12:02:33 INFO

http://avocado-vt.readthedocs.org/

If there are missing requirements, please install them and re-run vt-bootstrap.

6 Chapter 2. Getting Started

https://avocado-framework.readthedocs.io/en/latest/guides/contributor/chapters/environment.html#installing-in-develop-mode

Avocado Virt Test Compatibility Layer Documentation, Release 92.0

Note: Recommended programs might be needed for Avocado to correctly recognize test cases for your test backend
or for test cases to run correctly.

Warning: When you bootstrap avocado-vt the parallel run of avocado nrunner will be disabled by default, because
the avocado-vt doesn’t support parallel tests. If you run test suite without vt tests, you can enable parallel run by
nrunner.max_parallel_tasks config variable.

2.3 First steps with Avocado-VT

Let’s check if things went well by listing the Avocado plugins:

’$ avocado plugins

That command should show the loaded plugins, and hopefully no errors. The relevant lines will be:

Plugins that add new commands (avocado.plugins.cli.cmd):
vt-bootstrap Avocado VT - implements the 'vt-bootstrap' subcommand

Plugins that add new options to commands (avocado.plugins.cli):
vt Avocado VT/virt-test support to 'run' command
vt-list Avocado-VT/virt-test support for 'list' command

Then let’s list the tests available with:

$ avocado list —--vt-type gemu --verbose

This should list a large amount of tests (over 1900 virt related tests):

ACCESS_DENIED: 0
BROKEN_SYMLINK: 0O
BUGGY: 0
INSTRUMENTED: 49
MISSING: O
NOT_A_TEST: 27
SIMPLE: 3

VT: 1906

Note: If no test cases are listed make sure you installed recommended programs on your system, s. “Bootstrapping
Avocado-VT”.

Now let’s run a virt test:

$ avocado run type_specific.io-github-autotest-gemu.migrate.default.tcp
JOB ID o <id>

JOB LOG : /home/<user>/avocado/job-results/job-2015-06-15T19.46-1c3da89/job.log
JOB HTML : /home/<user>/avocado/job-results/job-2015-06-15T19.46-1c3da89/html/
—results.html

TESTS 1

(1/1) type_specific.io—-github—-autotest—-gemu.migrate.default.tcp: PASS (95.76 s)

(continues on next page)

2.3. First steps with Avocado-VT 7

Avocado Virt Test Compatibility Layer Documentation, Release 92.0

(continued from previous page)

PASS 1
ERROR 0
FAIL : 0
SKIP I
WARN I
INTERRUPT 0

9

TIME 5.76 s

If you have trouble executing the steps provided in this guide, you have a few options:
* Send an e-mail to the avocado mailing list.
* Open an issue on the avocado-vt github area.

* We also hang out on IRC (irc.oftc.net, #avocado).

8 Chapter 2. Getting Started

https://www.redhat.com/mailman/listinfo/avocado-devel
https://github.com/avocado-framework/avocado-vt/issues/new
irc://irc.oftc.net/#avocado

CHAPTER 3

Writing Tests

This documentation aims to help you write virt tests of your own. It’s organized to explain briefly the source structure,
then writing simple tests, then doing more complex stuff, such as defining custom guests.

Contents:

3.1 Test Providers

Test providers are the conjunction of a loadable module mechanism inside Avocado-VT that can pull a directory that
will provide tests, config files and any dependencies, and those directories. The design goals behind test providers are:

* Make it possible for other organizations to maintain test repositories, in other arbitrary git repositories.
* Stabilize API and enforce separation of core Avocado-VT functionality and tests.

The test provider spec is divided in Provider Layout and Definition files.

3.1.1 Test Provider Layout

| -— backend_1 —-> Backend name. The actual name doesn't matter.

| |-— cfg —> Test config directory. Holds base files for the test runner.
| |-— deps —> Auxiliary files such as ELF files, Windows executables,

—images that tests need.
| |-— provider_lib -> Shared libraries among tests.
| "—— tests —-> Python test files.
| T—- cfg -> Config files for tests.
' —— backend_2

|-— cfg

| —— deps

| -— provider_1lib

"—— tests

T-- cfg

Avocado Virt Test Compatibility Layer Documentation, Release 92.0

In fact, Avocado-VT libraries are smart enough to support arbitrary organization of python and config files inside the
‘tests’ directory. You don’t need to name the top level sub directories after backend names, although that certainly
makes things easier. The term ‘backend’ is used to refer to the supported virtualization technologies by Avocado-VT.
As of this writing, the backends known by Avocado-VT are:

* generic (tests that run in multiple backends)
* gemu

* openvswitch

* libvirt

* Vv2v

* libguestfs

* lvsb

The reason why you don’t need to name the directories after the backend names is that you can configure a test
definition file to point out any dir name. We’ll get into

3.1.2 Types of Test Providers

Each test provider can be either a local filesystem directory, or a subdirectory of a git repository. Of course, the git repo
subdirectory can be the repo root directory, but one of the points of the proposal is that people can hold Avocado-VT
providers inside git repos of other projects. Say qemu wants to maintain its own provider, they can do this by holding
the tests, say, inside a tests/avocado_vt subdirectory inside gemu.git.

3.1.3 Test Provider definition file

The main Avocado-VT suite needs a way to know about test providers. It does that by scan-
ning definition files inside the ‘test-providers.d’ sub directory. Definition files are config parser files
<http://docs.python.org/2/library/configparser.html> that encode information from a test provider. Here’s an example
structure of a test provider file:

[provider]

Test provider URI (default is a git repository, fallback to standard dir)
uri: git://git-provider.com/repo.git

#uri: /path-to-my-git-dir/repo.git

#uri: http://bla.com/repo.git

#uri: file://usr/share/tests

Optional git branch (for git repo type)
branch: master

Optionall git commit reference (tag or shal)
ref: e44231e88300131621586d24c07baaB8e627de989

Pubkey: File containing public key for signed tags (git)
pubkey: example.pub

What follows is a sequence of sections for any backends that this test
provider implements tests for. You must specify the sub directories of
each backend dir, reason why the subdir names can be arbitrary.

(continues on next page)

10 Chapter 3. Writing Tests

Avocado Virt Test Compatibility Layer Documentation, Release 92.0

(continued from previous page)

[gemu]

Optional subdir (place inside repo where the actual tests are)
This is useful for projects to keep virt tests inside their

(larger) test repos. Defaults to ''.

subdir: src/tests/gemu/

[agnostic]
For each test backend, you may have different sub directories
subdir: src/tests/generic/

Example of a default Avocado-VT provider file:

[provider]

uri: https://github.com/autotest/tp-gemu.git
[generic]

subdir: generic/

[gemu]

subdir: gemu/

[openvswitch]

subdir: openvswitch/

Let’s say you want to use a directory in your file system (/usr/share/tests/virt-test):

[provider]

uri: file://usr/share/tests/
[generic]

subdir: virt-test/generic/
[gemu]

subdir: virt-test/gemu/
[openvswitch]

subdir: virt-test/openvswitch/

3.2 Development workflow after the Repository Split

1. Fork the test provider you want to contribute to in github
https://help.github.com/articles/fork-a-repo

2. Clone the forked repository. In this example, we’ll assume you cloned the forked repo to

’/home/user/code/tp—libvirt

3. Add a file in ~/avocado/data/avocado-vt/test-providers.d, with a name you like. We’ll as-

sume you chose

’user—libvirt.ini

4. Contents of user-libvirt.ini:

[provider]

uri: file:///home/user/code/tp-libvirt
[libvirt]

subdir: libvirt/

[libguestfs]

(continues on next page)

3.2. Development workflow after the Repository Split

11

https://help.github.com/articles/fork-a-repo

Avocado Virt Test Compatibility Layer Documentation, Release 92.0

(continued from previous page)

subdir: libguestfs/
[1lvsb]

subdir: lvsb/

[v2v]

subdir: v2v/

5. This should be enough. Now, when you use ——1ist-tests, you’ll be able to see entries like:

1 user-libvirt.unattended_install.cdrom.extra_cdrom_ks.default_install.aio_native
2 user-libvirt.unattended_install.cdrom.extra_cdrom_ks.default_install.aio_threads
3 user-libvirt.unattended_install.cdrom.extra_cdrom_ks.perf.aio_native

6. Modify tests, or add new ones to your heart’s content. When you’re happy with your changes, you may create
branches and send us pull requests.

3.3 Writing your own avocado VT test

In this article, we’ll talk about:
1. Where the test files are located
2. Write a simple test file

3. Try out your new test, send it to the mailing list

3.3.1 Write our own ‘uptime’ test - Step by Step procedure

Now, let’s go and write our uptime test, which only purpose in life is to pick up a living guest, connect to it via ssh,
and return its uptime.

1. First we need to locate our provider directory. It’s inside Avocado data directory (avocado config —datadir),
usually in ~/avocado/data/avocado-vt. We are going to write a generic tp-gemu test, so let’s move into the right
git location:

$ cd $AVOCADO_DATA/avocado-vt/test-providers.d/downloads/io—github—autotest—-gemu

2. Our uptime test won’t need any gemu specific feature. Thinking about it, we only need a vin object and establish
an ssh session to it, so we can run the command. So we can store our brand new test under generic/tests:

$ touch generic/tests/uptime.py
$ git add generic/tests/uptime.py

3. OK, so that’s a start. So, we have at least to implement a function run. Let’s start with it and just put the
keyword pass, which is a no op. Our test will be like:

def run(test, params, env):

mon

Docstring describing uptime.

mmn

pass

12 Chapter 3. Writing Tests

https://help.github.com/articles/using-pull-requests

Avocado Virt Test Compatibility Layer Documentation, Release 92.0

4. Now, what is the API we need to grab a VM from our test environment? Our env object has a method, get_vm,
that will pick up a given vm name stored in our environment. Some of them have aliases. main_vm contains
the name of the main vm present in the environment, which is, most of the time, vml. env.get_vm returns a
vm object, which we’ll store on the variable vm. It’ll be like this:

def run(test, params, env):

mon

Docstring describing uptime.

mmn

vmm = env.get_vm(params["main_vm"])

5. A vm object has lots of interesting methods, which we plan on documenting them more thoroughly, but for now,
we want to ensure that this VM is alive and functional, at least from a gemu process standpoint. So, we’ll call
the method verify_alive (), which will verify whether the gemu process is functional and if the monitors,
if any exist, are functional. If any of these conditions are not satisfied due to any problem, an exception will be
thrown and the test will fail. This requirement is because sometimes due to a bug the vm process might be dead
on the water, or the monitors are not responding:

def run(test, params, env):
mmmn

Docstring describing uptime.

mmn

vm = env.get_vm(params["main_vm"])
vm.verify_alive ()

6. Next step, we want to log into the vm. The vm method that does return a remote session object is called
wait_for_login (), and as one of the parameters, it allows you to adjust the timeout, that is, the time we
want to wait to see if we can grab an ssh prompt. We have top level variable login_timeout, and it is a
good practice to retrieve it and pass its value to wait_for_login (), so if for some reason we’re running on
a slower host, the increase in one variable will affect all tests. Note that it is completely OK to just override this
value, or pass nothing to wait_for_login (), since this method does have a default timeout value. Back to
business, picking up login timeout from our dict of parameters:

def run(test, params, env):

mnn

Docstring describing uptime.

mnn

vim = env.get_vm(params["main_vm"])
vm.verify_alive ()
timeout = float (params.get ("login_timeout", 240))

7. Now we’ll call wait_for_login () and pass the timeout to it, storing the resulting session object on a
variable named session:

def run(test, params, env):

mon

Docstring describing uptime.

mon

vm = env.get_vm(params["main_vm"])
vm.verify_alive ()

timeout = float (params.get ("login_timeout", 240))
session = vm.wait_for_login (timeout=timeout)

8. Avocado-VT will do its best to grab this session, if it can’t due to a timeout or other reason it’ll throw a failure,
failing the test. Assuming that things went well, now you have a session object, that allows you to type in
commands on your guest and retrieve the outputs. So most of the time, we can get the output of these commands
through the method cmd () . It will type in the command, grab the stdin and stdout, return them so you can store

3.3. Writing your own avocado VT test 13

Avocado Virt Test Compatibility Layer Documentation, Release 92.0

it in a variable, and if the exit code of the command is != 0, it’ll throw a aexpect.ShellError?. So getting the
output of the unix command uptime is as simple as calling cmd () with ‘uptime’ as a parameter and storing the
result in a variable called uptime:

def run(test, params, env):

mnn

Docstring describing uptime.

vm = env.get_vm(params["main_vm"])
vm.verify_alive ()

timeout = float (params.get ("login_timeout", 240))
session = vm.wait_for_login (timeout=timeout)
uptime = session.cmd('uptime')

Warning: Some guests OS’s do not respect terminal echo setting, corrupting the output. There are some
workaround described in github issue#231.

9. If you want to just print this value so it can be seen on the test logs, just log the value of uptime using the
logging library. Since that is all we want to do, we may close the remote connection, to avoid ssh/rss sessions
lying around your test machine, with the method close ().

def run(test, params, env):

mon

Docstring describing uptime.
mimnm

vmm = env.get_vm(params["main_vm"])
vm.verify_alive()

timeout = float (params.get ("login_timeout", 240))
session = vm.wait_for_login (timeout=timeout)
uptime = session.cmd('uptime’)

logging.info ("Guest uptime result is: ", uptime)

session.close ()

10. Note that all failures that might happen here are implicitly handled by the methods called. If a test went from its
beginning to its end without unhandled exceptions, avocado assumes the test automatically as PASS, no need to
mark a test as explicitly passed. If you have explicit points of failure, for more complex tests, you might want to
mark it explicitly. test . cancel makes the test CANCEL (it is a new feature which not supported in avocado
36lts, you may want to use test . skip to make the test SKIP to achieve the similar purpose), test.error
makes the test Error, and test .fail makes the test Fail. And, in recent Avocado version (since commit
7ecf09fa), three exceptions: TestFail, TestError, and TestCancel were added to avocado namespace,
so you can import and use them appropriately. Note, people should not import exceptions from avocado.
core to raise them in test case, see avocado doc for more details. BTW, check the uptime makes no sense, but
let’s continue this example for test status explanation:

def run(test, params, env):

mmn

Docstring describing uptime.

mmn

vm = env.get_vm(params["main_vm"])
vm.verify_alive ()

timeout = float (params.get ("login_timeout", 240))
session = vm.wait_for_login(timeout=timeout)
uptime = session.cmd('uptime')

logging.info ("Guest uptime result is: ", uptime)

session.close ()

(continues on next page)

14 Chapter 3. Writing Tests

https://github.com/avocado-framework/avocado-vt/issues/231
http://avocado-framework.readthedocs.io/en/latest/api/core/avocado.core.html

Avocado Virt Test Compatibility Layer Documentation, Release 92.0

(continued from previous page)

expected_cancel_msg = 'O min'
expected_err_msg = 'l day'
expected_fail_msg = '10 days'

if expected_cancel_msg in uptime:
test.cancel ('Cancel message')

if expected_err_msg in uptime:
test.error ('Error message')

if expected_fail_msg in uptime:
test.fail('Fail message')

11. Now, I deliberately introduced a bug on this code just to show you guys how to use some tools to find and
remove trivial bugs on your code. I strongly encourage you guys to check your code with the inspektor tool.
This tool uses pylint to catch bugs on test code. You can install inspektor by adding the COPR repo https:
//copr.fedoraproject.org/coprs/lmr/Autotest/ and doing

$ yum install inspektor

After you’re done, you can run it:

$ inspekt lint generic/tests/uptime.py
x*kxkxkxxxx*x Module generic.tests.uptime
E0602: 10,4: run: Undefined variable 'logging'
Pylint check fail: generic/tests/uptime.py
Syntax check FAIL

12. Ouch. So there’s this undefined variable called logging on line 10 of the code. It’s because I forgot to import
the logging library, which is a python library to handle info, debug, warning messages. Let’s Fix it and the code
becomes:

import logging

def run(test, params, env):

mmon

Docstring describing uptime.
mmn

vmm = env.get_vm(params["main_vm"])
vm.verify_alive()

timeout = float (params.get ("login_timeout", 240))
session = vm.wait_for_login (timeout=timeout)
uptime = session.cmd ("uptime")

logging.info ("Guest uptime result is: ", uptime)

session.close ()

13. Let’s re-run inspektor to see if it’s happy with the code generated:

$ inspekt lint generic/tests/uptime.py
Syntax check PASS

14. So we’re good. Nice! Now, as good indentation does matter to python, inspekt indent will fix indentation
problems, and cut trailing whitespaces on your code. Very nice for tidying up your test before submission:

$ inspekt indent generic/tests/uptime.py

15. Now, you can test your code. When listing the gemu tests your new test should appear in the list (or shouldn’t
it?):

3.3. Writing your own avocado VT test 15

https://copr.fedoraproject.org/coprs/lmr/Autotest/
https://copr.fedoraproject.org/coprs/lmr/Autotest/

Avocado Virt Test Compatibility Layer Documentation, Release 92.0

$ avocado list uptime

16. There is one more thing to do. Avocado-vt does not walk the directories, it uses Cartesian config to define test

and all possible variants of tests. To add our test to Cartesian config we need yet another file:

$ touch generic/tests/cfg/uptime.cfqg
$ git add generic/tests/cfg/uptime.cfg

17. The file might look like this:

- uptime:
virt_test_type = gemu libvirt
type = uptime

where the virt_test_type specifies what backends can run this test and type specifies the test file. The .py will be

appended and it’ll be searched for in the usual location.

18. For the second time, let’s try to discover the test:

’$ avocado list uptime

19. OK still not there. We need to propagate the change to the actual config by running vz-bootstrap:

’$ avocado vt-bootstrap

20. And now you’ll finally see the test:

’$ avocado list uptime

21. Now, you can run your test to see if everything went well:

’$ avocado run —--vt-type gemu uptime

22. OK, so now, we have something that can be git committed and sent to the mailing list (partial):

diff --git a/generic/tests/uptime.py b/generic/tests/uptime.py
index e69de29..65d46fa 100644

-—— a/tests/uptime.py

+++ b/tests/uptime.py

@@ -0,0 +1,13 @@

+import logging

¥

+def run(test, params, env):

logging.info ("Guest uptime result is: %s", uptime)
session.close ()

I wun
+ Docstring describing uptime.

n wun

+ vm = env.get_vm(params|["main_vm"])

+ vm.verify_alive()

+ timeout = float (params.get ("login_timeout", 240))
+ session = vm.wait_for_login (timeout=timeout)

+ uptime = session.cmd ("uptime")

+

+

23. Oh, we forgot to add a decent docstring description. So doing it:

16 Chapter 3. Writing Tests

Avocado Virt Test Compatibility Layer Documentation, Release 92.0

import logging

def run(test, params, env):

mmn

Uptime test for virt guests:

1) Boot up a VM.
2) Establish a remote connection to 1it.
3) Run the 'uptime' command and log its results.

:param test: QEMU test object.
:param params: Dictionary with the test parameters.
:param env: Dictionary with test environment.

mnn

vm = env.get_vm(params["main_vm"])
vm.verify_alive()

timeout = float (params.get ("login_timeout", 240))
session = vm.wait_for_login (timeout=timeout)
uptime = session.cmd("uptime™)

logging.info ("Guest uptime result is: ", uptime)

session.close ()

24. git commit signing it, put a proper description, then send it with git send-email. Profit!

3.4 Defining New Guests

Let’s say you have a guest image that you’ve carefully prepared, and the JeOS just doesn’t cut it. Here’s how you add
new guests:

3.4.1 Linux Based Custom Guest

If your guest is Linux based, you can add a config file snippet describing your test (We have a bunch of pre-set values
for linux in the default config).

The drop in directory is

shared/cfg/guest-os/Linux/LinuxCustom

You can add, say, foo.cfg to that dir with the content:

- Foolinux:
image_name = images/foo-linux

Which would make it possible to specify this custom guest using

$ avocado run migrate..tcp —--vt-type gemu —--vt-guest-os LinuxCustom.FooLinux

JOB ID : 44a3990427c51530ba2fcc37087c100917eldd8a

JOB LOG : /home/lmr/avocado/job-results/job-2015-07-29T03.47-44a399b/job.log

JOB HTML : /home/lmr/avocado/job-results/job-2015-07-29T03.47-44a399b/html/results.
—html

TESTS 0 3

(1/3) type_specific.io-github-autotest-gemu.migrate.default.tcp: PASS (31.34 s)

(continues on next page)

3.4. Defining New Guests 17

Avocado Virt Test Compatibility Layer Documentation, Release 92.0

(continued from previous page)

(2/3) type_specific.io-github-autotest-gemu.migrate.with_set_speed.tcp: PASS (26.99 s)
(3/3) type_specific.io—-github—autotest—-gemu.migrate.with_reboot.tcp: PASS (46.40 s)
RESULTS : PASS 3 | ERROR O | FAIL O | SKIP O | WARN O | INTERRUPT O

TIME : 104.73 s

Provided that you have a file called images/foo-linux.qcow?2, if using the qcow2 format image.

Other useful params to set (not an exhaustive list):

shell_prompt is a regexp used to match the prompt on aexpect.
1f your custom os 1is based of some distro listed in the guest-os
dir, you can look on the files and just copy shell_ prompt

shell_prompt = [*]$
If you plan to use a raw device, set image_device = yes
image_raw_device = yes

Password of your image

password = 123456

Shell client used (may be telnet or ssh)
shell_client = ssh

Port were the shell client is running
shell_port = 22

File transfer client
file_transfer_client = scp

File transfer port

file_transfer_port = 22

3.4.2 Windows Based Custom Guest

If your guest is Linux based, you can add a config file snippet describing your test (We have a bunch of pre-set values
for linux in the default config).

The drop in directory is

shared/cfg/guest-os/Windows/WindowsCustom

You can add, say, foo.cfg to that dir with the content:

— FooWindows:
image_name = images/foo-windows

Which would make it possible to specify this custom guest using

$ avocado run migrate..tcp —--vt-type gemu --vt-guest-os WindowsCustom.FooWindows

Provided that you have a file called images/foo-windows.qcow?2.

Other useful params to set (not an exaustive list):

If you plan to use a raw device, set image_device = yes
image_raw_device = yes

Attention: Changing the password in this file is not supported,
since files in winutils.iso use 1it.

username = Administrator

password = 1lqg2w3eP

18 Chapter 3. Writing Tests

CHAPTER 4

Install Optional Packages

Some packages are not set in the Avocado-VT as hard dependencies, because they may only be required depending on
specific use cases.

If you run into problems while running specific tests, please verify if installing the mentioned packages fixes your
problem.

4.1 Fedora and EL

Install the following packages:

1. Install a toolchain in your host, which you can do with Fedora and RHEL with:

’$ yum groupinstall "Development Tools"

1. Install tcpdump, necessary to determine guest IPs automatically

’$ yum install tcpdump

1. Install nc, necessary to get output from the serial device and other gemu devices

’$ yum install nmap-ncat

1. Install the xz file archiver so you can uncompress the JeOS [2] image.

’$ yum install xz

1. Install the autotest-framework package, to provide the needed autotest libs.

’$ yum install --enablerepo=updates-testing autotest-framework

#. Install the fakeroot package, if you want to install from the CD Ubuntu and Debian servers without requiring root:

19

Avocado Virt Test Compatibility Layer Documentation, Release 92.0

$ yum install fakeroot

If you don’t install the autotest-framework package (say, your distro still doesn’t have autotest packages, or you don’t
want to install the rpm), you’ll have to clone an autotest tree and export this path as the AUTOTEST_PATH variable,
both as root and as your regular user. One could put the following on their ~/.bashrc file:

’$ export AUTOTEST_PATH="/path/to/autotest"

where this AUTOTEST_PATH will guide the run script to set up the needed libraries for all tests to work.

For other packages:

’$ yum install git

So you can checkout the source code. If you want to test the distro provided gemu-kvm binary, you can install:

’$ yum install gemu-kvm gemu-kvm-tools

To run libvirt tests, it’s required to install the virt-install utility, for the basic purpose of building and cloning virtual
machines.

’$ yum install virt-install

To run all tests that involve filedescriptor passing, you need python-devel. The reason is, this test suite is compatible
with python 2.4, whereas a std lib to pass filedescriptors was only introduced in python 3.2. Therefore, we had to
introduce a C python extension that is compiled on demand.

’$ yum install python-devel

It’s useful to also install:

’$ yum install python-imaging

Not vital, but very handy to do imaging conversion from ppm to jpeg and png (allows for smaller images).

4.1.1 Tests that are not part of the default JeOS set

If you want to run guest install tests, you need to be able to create floppies and isos to hold kickstart files:

’$ yum install mkisofs

For newer distros, such as Fedora, you’ll need:

’$ yum install genisoimage

Both packages provide the same functionality, needed to create iso images that will be used during the guest installation
process. You can also execute

4.1.2 Network tests

Last but not least, now we depend on libvirt to provide us a stable, working bridge. * By default, the kvm test uses
user networking, so this is not entirely necessary. However, non root and user space networking make a good deal of
the hardcode networking tests to not work. If you might want to use bridges eventually:

20 Chapter 4. Install Optional Packages

Avocado Virt Test Compatibility Layer Documentation, Release 92.0

’$ yum install libvirt bridge-utils ‘

Make sure libvirtd is started:

’$ service libvirtd start ‘

Make sure the libvirt bridge shows up on the output of brctl show:

$ brctl show
bridge name bridge id STP enabled interfaces
virbr0 8000.525400678eec yes virbrO-nic

4.2 Debian

Keep in mind that the current autotest package is a work in progress. For the purposes of running virt-tests it is fine,
but it needs a lot of improvements until it can become a more ‘official’ package.

The autotest debian package repo can be found at https://launchpad.net/~Imr/+archive/autotest, and you can add the
repos on your system putting the following on /etc/apt/sources.list:

$ deb http://ppa.launchpad.net/lmr/autotest/ubuntu raring main
$ deb-src http://ppa.launchpad.net/lmr/autotest/ubuntu raring main

Then update your software list:

$ apt—-get update

This has been tested with Ubuntu 12.04, 12.10 and 13.04.
Install the following packages:

1. Install the autotest-framework package, to provide the needed autotest libs.

’$ apt-get install autotest ‘

1. Install the xz-utils file archiver so you can uncompress the JeOS [2] image.

’$ apt-get install xz-utils ‘

1. Install tcpdump, necessary to determine guest IPs automatically

’$ apt-get install tcpdump ‘

1. Install nc, necessary to get output from the serial device and other gemu devices

’$ apt—-get install netcat-openbsd ‘

1. Install a toolchain in your host, which you can do on Debian and Ubuntu with:

’$ apt—-get install build-essential ‘

#. Install fakeroot if you want to install from CD debian and ubuntu, not requiring root:

’$ apt-get install fakeroot ‘

4.2. Debian 21

https://launchpad.net/~lmr/+archive/autotest

Avocado Virt Test Compatibility Layer Documentation, Release 92.0

So you install the core autotest libraries to run the tests.

If you don’t install the autotest-framework package (say, your distro still doesn’t have autotest packages, or you don’t
want to install the rpm), you’ll have to clone an autotest tree and export this path as the AUTOTEST_PATH variable,
both as root and as your regular user. One could put the following on their ~/.bashrc file:

’$ export AUTOTEST_PATH="/path/to/autotest"

where this AUTOTEST_PATH will guide the run script to set up the needed libraries for all tests to work.

For other packages:

’$ apt—-get install git

So you can checkout the source code. If you want to test the distro provided gemu-kvm binary, you can install:

’$ apt—-get install gemu-kvm gemu-utils

To run libvirt tests, it’s required to install the virt-install utility, for the basic purpose of building and cloning virtual
machines.

’$ apt—-get install virtinst

To run all tests that involve filedescriptor passing, you need python-all-dev. The reason is, this test suite is compatible
with python 2.4, whereas a std 1ib to pass filedescriptors was only introduced in python 3.2. Therefore, we had to
introduce a C python extension that is compiled on demand.

’$ apt-get install python-all-dev.

It’s useful to also install:

’$ apt-get install python-imaging

Not vital, but very handy to do imaging conversion from ppm to jpeg and png (allows for smaller images).

4.2.1 Tests that are not part of the default JeOS set

If you want to run guest install tests, you need to be able to create floppies and isos to hold kickstart files:

$ apt-get install genisoimage

4.2.2 Network tests

Last but not least, now we depend on libvirt to provide us a stable, working bridge. * By default, the kvm test uses
user networking, so this is not entirely necessary. However, non root and user space networking make a good deal of
the hardcode networking tests to not work. If you might want to use bridges eventually:

’$ apt-get install libvirt-bin python-libvirt bridge-utils

Make sure libvirtd is started:

’$ service libvirtd start

Make sure the libvirt bridge shows up on the output of brctl show:

22 Chapter 4. Install Optional Packages

Avocado Virt Test Compatibility Layer Documentation, Release 92.0

$ brctl show

bridge name bridge id

virbr0

8000.525400678eec

yes

STP enabled interfaces

virbrO-nic

4.2. Debian

23

Avocado Virt Test Compatibility Layer Documentation, Release 92.0

24 Chapter 4. Install Optional Packages

CHAPTER B

Listing guests

If you want to see all guests defined, you can use

$ avocado list —--vt-type [test type] —--vt-list-guests

This will generate a list of possible guests that can be used for tests, provided that you have an image with them. The
list will show which guests don’t have an image currently available. If you did perform the usual bootstrap procedure,
only JeOS.17.64 will be available.

Now, let’s assume you have the image for another guest. Let’s say you’ve installed Fedora 17, 64 bits, and that
—list-guests shows it as downloaded

$ avocado list —--vt-type gemu —--vt-list-guests

Linux.Cent0S.6.6.1386.1440fx (missing centos66-32.gcow2)
Linux.Cent0S.6.6.x86_64.1440fx (missing centos66-64.gcow2)

You can list all the available tests for Fedora.17.64 (you must use the exact string printed by the test, minus obviously
the index number, that’s there only for informational purposes:

$ avocado list —--vt-type gemu --vt-guest-os Linux.Cent0S.6.6.1386.1440fx —--verbose

VT io-github-autotest-gemu.trans_hugepage.base

VT io—-github-autotest—-gemu.trans_hugepage.defrag

VT io—github—-autotest—-gemu.trans_hugepage.swapping

VT io-github-autotest-gemu.trans_hugepage.relocated

VT io—-github-autotest—-gemu.trans_hugepage.migration

VT io—github—-autotest—-gemu.trans_hugepage.memory_stress
VT io-github-autotest-gemu.ntpd

VT io—github-autotest—-gemu.clock_getres

VT io—github—-autotest—-gemu.autotest_regression

VT io-github-autotest-gemu.shutdown

ACCESS_DENIED: 0
BROKEN_SYMLINK: O

(continues on next page)

25

Avocado Virt Test Compatibility Layer Documentation, Release 92.0

(continued from previous page)

BUGGY: 0
FILTERED: O
INSTRUMENTED: 52
MISSING: 0
NOT_A_TEST: 27
SIMPLE: 3

VT: 2375

Then you can execute one in particular. It’s the same idea, just copy the individual test you want and run it:

$ avocado run balloon_check --vt-type gemu —--vt-guest-os Fedora.21l

And it’ll run that particular test.

26 Chapter 5. Listing guests

CHAPTER O

Advanced Topics and Maintenance

Contents:

6.1 How tests are run

When running tests Avocado-VT will:
1) Get a dict with test parameters

2) Based on these params, prepare the environment - create or destroy vm instances, create/check disk images,
among others

3) Execute the test itself, that will use several of the params defined to carry on with its operations, that usually
involve: - If a test did not raise an exception, it PASSed - If a test raised a TestFail exception, it FAILed. - If a
test raised a TestNAError, it SKIPPED. - Otherwise, it ERRORed.

4) Based on what happened during the test, perform cleanup actions, such as killing vms, and remove unused disk
images.

The list of parameters is obtained by parsing a set of configuration files The command line options usually modify
even further the parser file, so we can introduce new data in the config set.

6.2 Cartesian Configuration

Cartesian Configuration is a highly specialized way of providing lists of key/value pairs within combination’s of
various categories. The format simplifies and condenses highly complex multidimensional arrays of test parameters
into a flat list. The combinatorial result can be filtered and adjusted prior to testing, with filters, dependencies, and
key/value substitutions.

The parser relies on indentation, and is very sensitive to misplacement of tab and space characters. It’s highly rec-
ommended to edit/view Cartesian configuration files in an editor capable of collapsing tab characters into four space
characters. Improper attention to column spacing can drastically affect output.

27

Avocado Virt Test Compatibility Layer Documentation, Release 92.0

6.2.1 Keys and values

Keys and values are the most basic useful facility provided by the format. A statement in the form <key> =
<value> sets <key>to <value>. Values are strings, terminated by a linefeed, with surrounding quotes completely
optional (but honored). A reference of descriptions for most keys is included in section Configuration Parameter Ref-
erence. The key will become part of all lower-level (i.e. further indented) variant stanzas (see section variants).
However, key precedence is evaluated in top-down or ‘last defined” order. In other words, the last parsed key has
precedence over earlier definitions.

6.2.2 Variants

A ‘variants’ stanza is opened by a ‘variants:’ statement. The contents of the stanza must be indented further left than
the ‘variants:’ statement. Each variant stanza or block defines a single dimension of the output array. When a Cartesian
configuration file contains two variants stanzas, the output will be all possible combination’s of both variant contents.
Variants may be nested within other variants, effectively nesting arbitrarily complex arrays within the cells of outside
arrays. For example:

variants:
— one:
keyl = Hello
- two:
key2 = World
— three:
variants:
- four:
key3 = foo
- five:
key3 = bar
- six:
keyl = foo
key2 = bar

While combining, the parser forms names for each outcome based on prepending each variant onto a list. In other
words, the first variant name parsed will appear as the left most name component. These names can become quite
long, and since they contain keys to distinguishing between results, a ‘short-name’ key is also used. For example,
running cartesian_config.py against the content above produces the following combinations and names:

dict 1: four.one
dict 2: four.two
dict 3: four.three
dict 4: five.one
dict 5: five.two
dict 6: five.three
dict 7: six.one
dict 8: six.two
dict 9: six.three

Variant shortnames represent the <TESTNAME> value used when results are recorded (see section Job Names and
Tags. For convenience variants who’s name begins with a ‘@’ do not prepend their name to ‘short-name’, only ‘name’.
This allows creating ‘shortcuts’ for specifying multiple sets or changes to key/value pairs without changing the results
directory name. For example, this is often convenient for providing a collection of related pre-configured tests based
on a combination of others.

28 Chapter 6. Advanced Topics and Maintenance

Avocado Virt Test Compatibility Layer Documentation, Release 92.0

6.2.3 Named variants

Named variants allow assigning a parseable name to a variant set. This enables an entire variant set to be used for in
Jilters. All output combinations will inherit the named variant key, along with the specific variant name. For example:

variants varl_name:

- one:
keyl = Hello
- two:
key2 = World
- three:
variants var2_name:
- one:
key3 = Hello2
- two:
key4 = World2
- three:

only (var2_name=one) . (varl_name=two)

Results in the following outcome when parsed with cartesian_config.py -c:

dict 1: (var2_name=one) . (varl_name=two)
dep = []
key2 = World # variable key2 from variants varl_name and variant two.
key3 = Hello2 # variable key3 from variants var2_name and variant one.
name = (var2_name=one) . (varl_name=two)
shortname = (var2_name=one) . (varl_name=two)
varl_name = two # variant name in same namespace as variables.

var2_name one # variant name in same namespace as variables.

Named variants could also be used as normal variables.:

variants guest_os:
- fedora:
- ubuntu:
variants disk_interface:
- virtio:
- hda:

Which then results in the following:

dict 1: (disk_interface=virtio) . (guest_os=fedora)

dep = []

disk_interface = virtio

guest_os = fedora

name = (disk_interface=virtio) . (guest_os=fedora)

shortname = (disk_interface=virtio) . (guest_os=fedora)
dict 2 (disk_interface=virtio) . (guest_os=ubuntu)

dep = []

disk_interface = virtio

guest_os = ubuntu

name = (disk_interface=virtio) . (guest_os=ubuntu)

shortname = (disk_interface=virtio) . (guest_os=ubuntu)
dict 3: (disk_interface=hda) . (quest_os=fedora)

dep = []

disk_interface = hda

guest_os = fedora

(continues on next page)

6.2. Cartesian Configuration 29

Avocado Virt Test Compatibility Layer Documentation, Release 92.0

(continued from previous page)

name = (disk_interface=hda) . (guest_os=fedora)

shortname = (disk_interface=hda) . (guest_os=fedora)
dict 4: (disk_interface=hda) . (guest_os=ubuntu)

dep = []

disk_interface = hda

guest_os = ubuntu

name = (disk_interface=hda) . (guest_os=ubuntu)

shortname = (disk_interface=hda) . (guest_os=ubuntu)

6.2.4 Dependencies

Often it is necessary to dictate relationships between variants. In this way, the order of the resulting variant sets may be
influenced. This is accomplished by listing the names of all parents (in order) after the child’s variant name. However,
the influence of dependencies is ‘weak’, in that any later defined, lower-level (higher indentation) definitions, and/or
filters (see section filters) can remove or modify dependents. For example, if testing unattended installs, each virtual
machine must be booted before, and shutdown after:

variants:
— one:
keyl = Hello
- two: one
key2 = World
— three: one two

Results in the correct sequence of variant sets: one, two, then three.

6.2.5 Filters

Filter statements allow modifying the resultant set of keys based on the name of the variant set (see section variants).
Filters can be used in 3 ways: Limiting the set to include only combination names matching a pattern. Limiting the
set to exclude all combination names not matching a pattern. Modifying the set or contents of key/value pairs within
a matching combination name.

Names are matched by pairing a variant name component with the character(s) ‘,; meaning OR, ‘.’ meaning AND,
and ‘.’ meaning IMMEDIATELY-FOLLOWED-BY. When used alone, they permit modifying the list of key/values
previously defined. For example:

Linux..OpenSuse:
initrd = initrd

Modifies all variants containing ‘Linux’ followed anywhere thereafter with ‘OpenSuse’, such that the ‘initrd’ key is
created or overwritten with the value ‘initrd’.

When a filter is preceded by the keyword ‘only’ or ‘no’, it limits the selection of variant combination’s This is used
where a particular set of one or more variant combination’s should be considered selectively or exclusively. When
given an extremely large matrix of variants, the ‘only’ keyword is convenient to limit the result set to only those
matching the filter. Whereas the ‘no’ keyword could be used to remove particular conflicting key/value sets under
other variant combination names. For example:

only Linux..Fedora..64

Would reduce an arbitrarily large matrix to only those variants who’s names contain Linux, Fedora, and 64 in them.

30 Chapter 6. Advanced Topics and Maintenance

Avocado Virt Test Compatibility Layer Documentation, Release 92.0

However, note that any of these filters may be used within named variants as well. In this application, they are only
evaluated when that variant name is selected for inclusion (implicitly or explicitly) by a higher-order. For example:

variants:
- one:
keyl = Hello
variants:

- two:

key2 = Complicated
— three: one two

key3 = World

variants:

- default:

only three

key2 =

only default

Results in the following outcome:

name = default.three.one
keyl = Hello

key2 =

key3 = World

6.2.6 Value Substitutions

Value substitution allows for selectively overriding precedence and defining part or all of a future key’s value. Using a
previously defined key, it’s value may be substituted in or as a another key’s value. The syntax is exactly the same as
in the bash shell, where as a key’s value is substituted in wherever that key’s name appears following a ‘$’ character.
When nesting a key within other non-key-name text, the name should also be surrounded by ‘{‘, and ‘}’ characters.

Replacement is context-sensitive, thereby if a key is redefined within the same, or, higher-order block, that value will
be used for future substitutions. If a key is referenced for substitution, but hasn’t yet been defined, no action is taken.
In other words, the $key or ${key} string will appear literally as or within the value. Nesting of references is not
supported (i.e. key substitutions within other substitutions.

For example, if one = 1, two = 2, and three = 3; then, order = ${one}${two}S$S{three} re-
sults in order = 123. This is particularly handy for rooting an arbitrary complex directory tree within a predefined
top-level directory.

An example of context-sensitivity,

keyl = default value
key2 = default wvalue
sub = "keyl: ${keyl}; key2: S${key2};"
variants:
- one:
keyl = Hello
sub = "keyl: ${keyl}; key2: S{key2};"

— two: one
key2 = World

sub = "keyl: ${keyl}; key2: S{key2};"
— three: one two
sub = "keyl: ${keyl}; key2: S$S{key2};"

6.2. Cartesian Configuration

31

Avocado Virt Test Compatibility Layer Documentation, Release 92.0

Results in the following,

dict 1: one
dep = []
keyl = Hello

key2 = default value

name = one

shortname = one

sub = keyl: Hello; key2: default value;
dict 2: two

dep = ['one']

keyl = default value
key2 = World

name = two

shortname = two

sub = keyl: default value; key2: World;
dict 3: three

dep = ['one', 'two']

keyl = default value

key2 default value

name = three

shortname = three

sub = keyl: default value; key2: default value;

6.2.7 Key sub-arrays

Parameters for objects like VM’s utilize array’s of keys specific to a particular object instance. In this way, values
specific to an object instance can be addressed. For example, a parameter ‘vms’ lists the VM objects names to
instantiate in the current frame’s test. Values specific to one of the named instances should be prefixed to the name:

vms = vml second_vm another_vm
mem = 128

mem_vml = 512

mem_second_vm = 1024

The result would be, three virtual machine objects are create. The third one (another_vm) receives the default ‘mem’
value of 128. The first two receive specialized values based on their name.

The order in which these statements are written in a configuration file is not important; statements addressing a single
object always override statements addressing all objects. Note: This is contrary to the way the Cartesian configuration
file as a whole is parsed (top-down).

6.2.8 Heterogeneous guest variants

The ‘join’ filter combined with the ‘suffix’ operator can be utilized together in order to produce guest variants
with different guest OS or other types of configuration within the same test. Adding the ‘suffix’ keyword at the end
of each variant to be combined and joining all the variants in the end will produce one final variant product with all
participating variant dictionaries separately suffixed and combined into one final dictionary. For instance the following
definition

variants:
- one:
keyl Hello
key2 = Brave

(continues on next page)

32 Chapter 6. Advanced Topics and Maintenance

Avocado Virt Test Compatibility Layer Documentation, Release 92.0

(continued from previous page)

suffix _vl

- two:
keyl = Bye
key2 = Brave
key3 = World
suffix _v2

— three:

variants:

- four:
key4 = foo
only one

- five:
key4 = bar

- six:
keyl = foo
key2 = bar
key3 = baz

only two

join one two

will join variants one and two with suffixed parameters key1l_v1

following resulting dictionaries:

Helloand keyl_v2 = Bye ineach of the

dict 1: four.one.five.two
dep = []
keyl_vl = Hello
keyl_v2 = Bye
key2 = Brave
key3 = World

key4 = bar

name = four.one.five.two

shortname = four.one.five.two
dict 2: four.one.six.two

dep = []

keyl = foo

keyl_vl = Hello
keyl_v2 = Bye
key2 = bar
key2_v1l = Brave
key2_v2 = Brave

key3 = baz

key3_v2 = World

key4 = foo

name = four.one.six.two

shortname = four.one.six.two
dict 3: five.one.two

dep = []

keyl_vl = Hello
keyl_v2 = Bye
key2 = Brave
key3 = World
key4 = bar

name = five.one.two
shortname = five.one.two
dict 4: five.one.six.two

(continues on next page)

6.2. Cartesian Configuration

33

Avocado Virt Test Compatibility Layer Documentation, Release 92.0

(continued from previous page)

dep = []

keyl = foo
keyl_vl = Hello
keyl_v2 = Bye
key2 = bar
key2_v1l = Brave
key2_v2 = Brave

key3 = baz

key3_v2 = World

key4 = bar

name = five.one.six.two
shortname = five.one.six.two

Regarding the choice of variants, using the join one two also plays the role of a filter for three which restricts
the final selection to all joined one-two test variants. The join one operation is thus equivalent to an only one
filter. The outcome above is additionally filtered by only filters, which restrict the initial joined Cartesian products:

dict 1: four.one.two
dict 2: four.one.five.two
dict 3: four.one.six.two
dict 4: five.one.four.two
dict 5: five.one.two
dict 6: five.one.six.two
dict 7: six.one.four.two
dict 8: six.one.five.two
dict 9: six.one.two

of pairs <four-or-five-or-six>.oneand <four-or-five-or-six>.two to variants containing four.
one, six.two,or five.<one-or-two>

dict 1: four.one.five.two
dict 2: four.one.six.two
dict 3: five.one.two

dict 4: five.one.six.two

One important point to consider when using heterogeneous variants is that parameter overwriting of suffixed param-
eters is only possible using regex operators like ‘?=", ‘?<=", and ‘?+=". Since adding a suffix will transform all
parameters within the variant (or at least the ones that have more general nonsuffixed version of different value), reg-
ular overwriting will only match the general parameter and will not perform a search for the suffixed versions for
performance reasons. Using the above operators with proper regular expression for the key will solve this.

6.2.9 Include statements

The ‘include’ statement is utilized within a Cartesian configuration file to better organize related content. When
parsing, the contents of any referenced files will be evaluated as soon as the parser encounters the include statement.
The order in which files are included is relevant, and will carry through any key/value substitutions (see section
key_sub_arrays) as if parsing a complete, flat file.

6.2.10 Combinatorial outcome

The parser is available as both a python module and command-line tool for examining the parsing results in a text-
based listing. To utilize it on the command-line, run the module followed by the path of the configuration file to parse.
For example, common_1lib/cartesian_config.py tests/libvirt/tests.cfgq.

34 Chapter 6. Advanced Topics and Maintenance

Avocado Virt Test Compatibility Layer Documentation, Release 92.0

The output will be just the names of the combinatorial result set items (see short-names, section Variants). However,
the ‘——contents’ parameter may be specified to examine the output in more depth. Internally, the key/value data is
stored/accessed similar to a python dictionary instance. With the collection of dictionaries all being part of a python
list-like object. Irrespective of the internals, running this module from the command-line is an excellent tool for both
reviewing and learning about the Cartesian Configuration format.

In general, each individual combination of the defined variants provides the parameters for a single test. Testing
proceeds in order, through each result, passing the set of keys and values through to the harness and test code. When
examining Cartesian configuration files, it’s helpful to consider the earliest key definitions as “defaults”, then look to
the end of the file for other top-level override to those values. If in doubt of where to define or set a key, placing it at
the top indentation level, at the end of the file, will guarantee it is used.

6.2.11 Formal definition

A list of dictionaries is referred to as a frame.
» The parser produces a list of dictionaries (dicts). Each dictionary contains a set of key-value pairs.

* Each dict contains at least three keys: name, shortname and depend. The values of name and shortname are
strings, and the value of depend is a list of strings.

 The initial frame contains a single dict, whose name and shortname are empty strings, and whose depend is an
empty list.

* Parsing dict contents
— The dict parser operates on a frame, referred to as the current frame.

— A statement of the form <key> = <value> sets the value of <key> to <value> in all dicts of the current
frame. If a dict lacks <key>, it will be created.

— A statement of the form <key> += <value> appends <value> to the value of <key> in all dicts of the current
frame. If a dict lacks <key>, it will be created.

— A statement of the form <key> <= <value> pre-pends <value> to the value of <key> in all dicts of the
current frame. If a dict lacks <key>, it will be created.

— A statement of the form <key> ~= <value> sets the value of <key> to <value> in all dicts of the current
frame unless the <key> was already defined. Otherwise the original value is preserved.

— A statement of the form <key> ?= <value> sets the value of <key> to <value>, in all dicts of the current
frame, but only if <key> exists in the dict. The operators ?+= and ?<= are also supported.

— A statement of the form no <regex> removes from the current frame all dicts whose name field matches
<regex>.

— A statement of the form only <regex> removes from the current frame all dicts whose name field does not
match <regex>.

» Content exceptions

— Single line exceptions have the format <regex>: <key> <operator> <value> where <operator> is any of
the operators listed above (e.g. =, +=, ?<=). The statement following the regular expression <regex> will
apply only to the dicts in the current frame whose name partially matches <regex> (i.e. contains a substring
that matches <regex>).

— A multi-line exception block is opened by a line of the format <regex>:. The text following this line should
be indented. The statements in a multi-line exception block may be assignment statements (such as <key>
= <value>) or no or only statements. Nested multi-line exceptions are allowed.

* Parsing Variants

6.2. Cartesian Configuration 35

Avocado Virt Test Compatibility Layer Documentation, Release 92.0

A variants block is opened by a variants: statement. The indentation level of the statement places
the following set within the outer-most context-level when nested within other variant : blocks. The
contents of the variants: block must be further indented.

— A variant-name may optionally follow the variants keyword, before the : character. That name will
be inherited by and decorate all block content as the key for each variant contained in it’s the block.

— The name of the variants are specified as — <variant_name>:. Each name is pre-pended to the name
field of each dict of the variant’s frame, along with a separator dot (‘.”).

— The contents of each variant may use the format <key> <op> <value>. They may also contain further
variants: statements.

— If the name of the variant is not preceeded by a @ (i.e. - @<variant_name>:), it is pre-pended to the
shortname field of each dict of the variant’s frame. In other words, if a variant’s name is preceeded by a
@, it is omitted from the shortname field.

— Each variant in a variants block inherits a copy of the frame in which the variants: statement appears. The
‘current frame’, which may be modified by the dict parser, becomes this copy.

— The frames of the variants defined in the block are joined into a single frame. The contents of frame replace
the contents of the outer containing frame (if there is one).

¢ Filters

— Filters can be used in 3 ways:

%

only <filter>

*’no <filter>

*’<filter>: starts a conditional block (see section :ref: filters_)

— Syntax:

means AND
means IMMEDIATELY-FOLLOWED-BY

* Example:

gcow?2..Fedora.l4, RHEL.6..raw..boot, smp2..gcow2..migrate..ide

means match all dicts whose names have:

(qcow2 AND (Fedora IMMEDIATELY-FOLLOWED-BY 14)) OR
((RHEL IMMEDIATELY-FOLLOWED-BY 6) AND raw AND boot) OR
(smp2 AND gcow2 AND migrate AND ide)

¢ Note:

'gcow2. .Fedora.l1l4' is equivalent to 'Fedora.l4..gcow2'.

'qcow2..Fedora.l4' is not equivalent to 'gcow2..l4.Fedora'.
'ide, scsi' is equivalent to 'scsi, ide'.

6.2.12 Examples

* A single dictionary:

36 Chapter 6. Advanced Topics and Maintenance

Avocado Virt Test Compatibility Layer Documentation, Release 92.0

keyl = valuel
key2 = value2
key3 = value3

Results in the following::

Dictionary #0:
depend = []
keyl = valuel
key2 = value2
key3 = value3
name =
shortname =

Adding a variants block:

keyl = valuel
key2 = value2
key3 = value3
variants:

— one:

- two:

- three:

Results in the following:

Dictionary #0:
depend = []
keyl = valuel
key2 = value2
key3 = value3
name = one
shortname = one

Dictionary #1:
depend = []
keyl = valuel
key2 = value2
key3 = value3
name = two
shortname = two

Dictionary #2:
depend = []
keyl = valuel
key2 = value2
key3 = value3
name = three

shortname = three

Modifying dictionaries inside a variant:

keyl

variants:
- one:

valuel
key2 = value2
key3 = value3

(continues on next page)

6.2. Cartesian Configuration

37

Avocado Virt Test Compatibility Layer Documentation, Release 92.0

(continued from previous page)

keyl = Hello World

key2 <= some_prefix__
- two:

key2 <= another_prefix_
— three:

Results in the following:

Dictionary #0:

depend = []

keyl = Hello World

key2 = some_prefix_value2

key3 = value3

name = one

shortname = one
Dictionary #1:

depend = []

keyl = valuel

key2 = another_prefix_value2

key3 = value3

name = two

shortname = two
Dictionary #2:

depend []

keyl = valuel

key2 = value2

key3 = value3

name = three

shortname = three

Adding dependencies:
keyl = valuel
key2 = value2

key3 = value3

variants:
- one:
keyl = Hello World
key2 <= some_prefix__
- two: one
key2 <= another_prefix_
- three: one two

Results in the following:

Dictionary #0:

depend = []
keyl = Hello World
key2 = some_prefix_value2
key3 = value3
name = one
shortname = one
Dictionary #1:
depend = ['one']
keyl = valuel
key2 = another_prefix_value2

(continues on next page)

38

Chapter 6. Advanced Topics and Maintenance

Avocado Virt Test Compatibility Layer Documentation, Release 92.0

(continued from previous page)

key3 = value3

name = two

shortname = two
Dictionary #2:

depend = ['one', 'two']

keyl = valuel

key2 = value?2

key3 = value3

name = three

shortname = three

Multiple variant blocks:

key2

variants:
- one:

- two:

variants:
- A:
- B:

keyl = valuel
value?2
key3 = value3

keyl = Hello World
key2 <= some_prefix_

one

key2 <= another_prefix_
- three: one two

Results in the following:

Dictionary #0:

depend = []

keyl = Hello World

key2 = some_prefix_value2

key3 = value3

name = A.one

shortname = A.one
Dictionary #1:

depend = ['A.one']

keyl = valuel

key2 = another_prefix_value2

key3 = value3

name = A.two

shortname = A.two
Dictionary #2:

depend = ['A.one', 'A.two']

keyl = valuel

key2 = value2

key3 = value3

name = A.three

shortname = A.three
Dictionary #3:

depend = []

keyl = Hello World

key2 = some_prefix_value2

key3 = value3

(continues on next page)

6.2. Cartesian Configuration

39

Avocado Virt Test Compatibility Layer Documentation, Release 92.0

(continued from previous page)

name = B.one

shortname = B.one
Dictionary #4:

depend = ['B.one']

keyl = valuel

key2 = another_prefix_value2

key3 = value3

name = B.two

shortname = B.two
Dictionary #5:

depend = ['B.one', 'B.two']

keyl = valuel

key2 = value2

key3 = value3

name = B.three

shortname = B.three

Filters, no and only:

keyl

valuel

key2 = valuez2
key3 = value3

variants:
- one:

keyl = Hello World
key2 <= some_prefix_

- two:

one

key2 <= another_prefix_
- three: one two

variants:
- A:

no
- B:

one

only one,three

Results in the following:

Dictionary
depend
keyl =
key2 =
key3 =
name =

#0:

= ['A.one']

valuel
another_prefix_value2
value3

A.two

shortname = A.two

Dictionary
depend
keyl =
key2 =
key3 =
name =

#1:

= ['A.one', 'A.two']
valuel

value?2

value3

A.three

shortname = A.three

Dictionary
depend
keyl =
key2 =

#2:

=[]

Hello World
some_prefix_value?2

(continues on next page)

40

Chapter 6. Advanced Topics and Maintenance

Avocado Virt Test Compatibility Layer Documentation, Release 92.0

(continued from previous page)

key3 value3

name = B.one

shortname = B.one
Dictionary #3:

depend = ['B.one', 'B.two']

keyl = valuel

key2 = value?2

key3 = value3

name = B.three

shortname = B.three

Short-names:

keyl = valuel
key2
key3 = value3

value?2

variants:
— one:
keyl = Hello World
key2 <= some_prefix_
- two: one
key2 <= another_prefix_
— three: one two

variants:
- QA:
no one
- B:
only one,three

Results in the following:

Dictionary #0:
depend = ['A.one']
keyl = valuel
key2 = another_prefix_value2
key3 = value3
name = A.two
shortname = two
Dictionary #1:
depend = ['A.one', 'A.two']
keyl = valuel
key2 = value2
key3 = value3
name = A.three
shortname = three
Dictionary #2:
depend = []
keyl = Hello World

key2 = some_prefix_value2
key3 = value3
name = B.one

shortname = B.one
Dictionary #3:

depend = ['B.one', 'B.two']

keyl = valuel

(continues on next page)

6.2. Cartesian Configuration 41

Avocado Virt Test Compatibility Layer Documentation, Release 92.0

(continued from previous page)

key2 = value?2
key3 = value3
name = B.three

shortname = B.three

Exceptions:

keyl = valuel
key2 = value2
key3 = value3

variants:
- one:
keyl = Hello World
key2 <= some_prefix__
- two: one
key2 <= another_prefix_
- three: one two

variants:
- @A:
no one
- B:
only one,three

three: key4 = some_value
A
no two
key5 = yet_another_value

Results in the following:

Dictionary #0:
depend = ['A.one', 'A.two']
keyl = valuel
key2 = value2
key3 = value3

key4 = some_value
key5 = yet_another_value
name = A.three

shortname = three
Dictionary #1:

depend = []
keyl = Hello World
key2 = some_prefix_value2

key3 = value3

name = B.one

shortname = B.one
Dictionary #2:

depend = ['B.one', 'B.two']

keyl = valuel

key2 = value?2

key3 = value3

key4 = some_value

name = B.three

shortname = B.three

42

Chapter 6. Advanced Topics and Maintenance

Avocado Virt Test Compatibility Layer Documentation, Release 92.0

6.2.13 Default Configuration Files

The test configuration files are used for controlling the framework, by specifying parameters for each test. The parser
produces a list of key/value sets, each set pertaining to a single test. Variants are organized into separate files based on
scope and/or applicability. For example, the definitions for guest operating systems is sourced from a shared location
since all virtualization tests may utilize them.

For each set/test, keys are interpreted by the test dispatching system, the pre-processor, the test module itself, then
by the post-processor. Some parameters are required by specific sections and others are optional. When required,
parameters are often commented with possible values and/or their effect. There are select places in the code where
in-memory keys are modified, however this practice is discouraged unless there’s a very good reason.

When avocado vt-bootstrap —-vt-type [type] is executed (see section Bootstrapping Avocado-VT),
copies of the sample configuration files are copied for use under the backends/ [type] /cfg subdirectory of the
virtualization technology-specific directory. For example, backends/gemu/cfg/base.cfqg.

Relative | Description
Direc-
tory or
File
cfg/tests.cfgThe first file read that includes all other files, then the master set of filters to select the actual test set to
be run. Normally this file never needs to be modified unless precise control over the test-set is needed
when utilizing the autotest-client (only).

cfg/tests- | Included by tests.cfg to indirectly reference the remaining set of files to include as well as set
shared.cfg| some global parameters. It is used to allow customization and/or insertion within the set of includes.
Normally this file never needs to be modified.

cfg/base.ctgTop-level file containing important parameters relating to all tests. All keys/values defined here will be
inherited by every variant unless overridden. This is the first file to check for settings to change based
on your environment

cfg/build.dfonfiguration specific to pre-test code compilation where required/requested. Ignored when a client is
not setup for build testing.

cfg/subtests Afigomatically generated based on the test modules and test configuration files found when the
avocado vt-bootstrap is used. Modifications are discouraged since they will be lost next time
bootstrap is used.

cfg/guest-| Automatically generated when avocado vt-bootstrap isused from files within shared/cfg/
os.cfg guest-os/. Defines all supported guest operating system types, architectures, installation images,
parameters, and disk device or image names.

cfg/guest-| All virtual and physical hardware related parameters are organized within variant names. Within subtest
hw.cfg variants or the top-level test set definition, hardware is specified by Including, excluding, or filtering
variants and keys established in this file.

cfg/cdkeyd.dfertain operating systems require non-public information in order to operate and or install properly.
For example, installation numbers and license keys. None of the values in this file are populated
automatically. This file should be edited to supply this data for use by the unattended install test.
cfg/virtio-| Paravirtualized hardware when specified for Windows testing, must have dependent drivers installed as
win.cfg | part of the OS installation process. This file contains mandatory variants and keys for each Windows
OS version, specifying the host location and installation method for each driver.

6.3 Building test applications

This is a description of how to build test applications from a test case.

6.3. Building test applications 43

Avocado Virt Test Compatibility Layer Documentation, Release 92.0

6.3.1 Dependencies

If you write an application that is supposed to be run on the test-target, place it in the directory ../deps/<name>/
relative to where your test case is placed. The easiest way to obtain the full path to this directory is by calling
data_dir.get_deps_dir(“<name>"). Don’t forget to add from virttest import data_dir to your test case.

Besides the source file, create a Makefile that will be used to build your test application. The below example shows a
Makefile for the application for the timedrift test cases. The remote_build module requires that a Makefile is included
with all test applications.

L;Ll:?+:—lrt

.PHONY: clean

all: clktest get_tsc
clktest: clktest.o
get_tsc: get_tsc.o

clean:
rm —-f clktest get_tsc

6.3.2 remote_build

To simplify the building of applications on target, and to simplify avoiding the building of applications on target when
they are installed pre-built, use the remote_build module. This module handles both the transfer of files, and running
make on target.

A simple example:

address = vm.get_address (0)

source_dir = data_dir.get_deps_dir ("<testapp>")

builder = remote_build.Builder (params, address, source_dir)
full build_path = builder.build()

In this case, we utilize the .build() method, which execute the necessary methods in builder to copy all files to target
and run make (if needed). When done, .build() will return the full path on target to the application that was just built.
Be sure to use this path when running your test application, as the path is changed if the parameters of the build is
changed. For example:

session.cmd_status (" ——test" % os.path.join(full_build_path, "testapp"))

The remote_build.Builder class can give you fine-grained control over your build process as well. Another way to
write the above .build() invocation above is:

builder = remote_build.Builder (params, address, source_dir)
if builder.sync_directories():

builder.make ()
full build_path = builder.full_build_path

This pattern can be useful if you e.g. would like to add an additional command to run before builder.make(), perhaps
to install some extra dependencies.

44 Chapter 6. Advanced Topics and Maintenance

Avocado Virt Test Compatibility Layer Documentation, Release 92.0

6.4 Networking

Here we have notes about networking setup in Avocado-VT.

6.4.1 Configuration

How to configure to allow all the traffic to be forwarded across the virbrQ bridge: Execute the command

$ echo "-I FORWARD -m physdev —-physdev-is-bridged —-7j ACCEPT" > /etc/sysconfig/
—~iptables-forward-bridged

$ lokkit —--custom-rules=ipv4:filter:/etc/sysconfig/iptables-forward-bridged

$ service libvirtd reload

Configure Static IP address in Avocado-VT

Sometimes, we need to test with guest(s) which have static ip address(es).
* e.g. No real/emulated DHCP server in test environment.
¢ e.g. Test with old image we don’t want to change the net config.
* e.g. Test when DHCP exists problem.

Create a bridge (for example, ‘vbr’) in host, configure its ip to 192.168.100.1, guest can access host by it. And assign
nic(s)’ ip in tests.cfg, and execute test as usual.

tests.cfg:

ip_nicl = 192.168.100.119
nic_mac_nicl = 11:22:33:44:55:67
bridge = vbr

6.4.2 TestCases

Ntttcp

The Nitttcp test suite is a network performance test for windows, developed by Microsoft. It is not a freely redis-
tributable binary, so you must download it from the website, here’s the direct link for download (keep in mind it might
change):

https://gallery.technet.microsoft.com/NTttcp- Version-528-Now-f8b 12769
The knowledge base article associated with it is:
http://msdn.microsoft.com/en-us/windows/hardware/gg463264

You need to add the package to winutils.iso, the iso with utilities used to test windows. First, download the iso. 7The
get started documentation can help you out with downloading if you like it, but the direct download link is here:

https://avocado-project.org/data/assets/winutils.iso

You need to put all its contents on a folder and create a new iso. Let’s say you want to download the iso to /home/
kermit/Downloads/winutils. iso. You can create the directory, go to it:

$ mkdir -p /home/kermit/Downloads
$ cd /home/kermit/Downloads

6.4. Networking 45

https://gallery.technet.microsoft.com/NTttcp-Version-528-Now-f8b12769
http://msdn.microsoft.com/en-us/windows/hardware/gg463264
https://avocado-project.org/data/assets/winutils.iso

Avocado Virt Test Compatibility Layer Documentation, Release 92.0

Download the iso, create 2 directories, 1 for the mount, another for the contents:

wget https://avocado-project.org/data/assets/winutils.iso
mkdir original

sudo mount -o loop winutils.iso original

mkdir winutils

v W W

Copy all contents from the original cd to the new structure:

’$ cp -r original/* winutils/

Create the destination ntttcp directory on that new structure:

’$ mkdir -p winutils/NTttcp

Download the installer and copy autoit script to the new structure, unmount the original mount:

$ cd winutils/NTttcp

$ wget https://gallery.technet.microsoft.com/NTttcp-Version-528-Now-£8b12769/file/
+159655/1/NTttcp-v5.33.zip -0 "winutils/NTttcp/NTttcp-v5.33.zip"

$ cp /usr/local/autotest/client/virt/scripts/ntttcp.au3 ./

$ sudo umount original

Backup the old winutils.iso and create a new winutils.iso using mkisofs:

$ sudo mv winutils.iso winutils.iso.bak
$ mkisofs -o winutils.iso -max-iso09660-filenames -relaxed-filenames -D —--input-
—charset 1s08859-1 winutils

And that is it. Don’t forget to keep winutils in an appropriate location that can be seen by Avocado-VT.

6.5 Performance Testing

6.5.1 Performance subtests

network

* netperf (linux and windows)

e ntttcp (windows)

block

¢ iozone (linux)
* iozone (windows) (iozone has its own result analysis module)
* iometer (windows) (not push upstream)

ffsb (linux)

e gemu_iotests (host)

e fio (linux)

46 Chapter 6. Advanced Topics and Maintenance

https://github.com/autotest/autotest/tree/master/client/virt/tests/netperf.py
https://github.com/autotest/autotest/tree/master/client/virt/tests/ntttcp.py
https://github.com/autotest/virt-test/virttest/iozone
https://github.com/autotest/virt-test/virttest/ffsb
https://github.com/autotest/autotest-client-tests/tree/master/qemu_iotests
https://github.com/autotest/autotest-client-tests/tree/master/fio

Avocado Virt Test Compatibility Layer Documentation, Release 92.0

6.5.2 Environment setup
Autotest already supports prepare environment for performance testing, guest/host need to be reboot for
some configuration. setup script

Autotest supports to numa pining. Assign “numanode=-1" in tests.cfg, then vcpu threads/vhost_net threads/VM mem-
ory will be pined to last numa node. If you want to pin other processes to numa node, you can use numctl and taskset.

memory:
$ numactl -m $n $Scmdline

cpu:

S taskset S$node_mask S$thread_id

The following content is manual guide.

1.First level pinning would be to use numa pinning when starting the guest.
e.g. $ numactl -¢c 1 -m 1 gemu-kvm -smp 2 -m 4G <> (pinning guest memory and cpus to,
—numa-node 1)

2.For a single instance test, it would suggest trying a one to one mapping of vcpu to
—pyhsical core.

e.g.

get guest vcpu threads id

$ taskset -p 40 S$vcpusl # (pinning vcpul thread to pyshical cpu #6)

$ taskset -p 80 $vcpus2 # (pinning vcpu2 thread to physical cpu #7)

3.To pin vhost on host. get vhost PID and then use taskset to pin it on the same
—soket.

e.g
$ taskset -p 20 $vhost # (pinning vcpu2 thread to physical cpu #5)

4.In guest,pin the IRQ to one core and the netperf to another.
make sure irgbalance is off - “$ service irgbalance stop’
find the interrupts - '$ cat /proc/interrupts’
find the affinity mask for the interrupt(s) - '$ cat /proc/irq/<irg#>/smp_affinity"’
change the value to match the proper core.make sure the vlaue is cpu mask.
e.g. pin the IRQ to first core.
$ echo 01>/proc/irqg/$virtiO—-input/smp_affinity
S echo 01>/proc/irg/$virtiO-output/smp_affinity
5)pin the netserver to another core.
e.g.
$ taskset -p 02 netserver

1)
2)
3)
4)

5.For host to guest scenario. to get maximum performance. make sure to run netperf on
—different cores on the same numa node as the guest.

e.g.

$ numactl -m 1 netperf -T 4 (pinning netperf to physical cpu #4)

6.5.3 Execute testing

» Submit jobs in Autotest server, only execute netperf.guset_exhost for three times.

tests.cfa:

only netperf.guest_exhost
variants:
- repeatl:

(continues on next page)

6.5. Performance Testing 47

https://github.com/autotest/virt-test/blob/master/shared/scripts/rh_perf_envsetup.sh

Avocado Virt Test Compatibility Layer Documentation, Release 92.0

(continued from previous page)

- repeat2:
- repeat3:
vbr0 has a static ip: 192.168.100.16
bridge=vbr0
virbr0 is created by libvirtd, guest nic2 get ip by dhcp
bridge_nic2 = virbr0
guest nicl static ip
ip_nicl = 192.168.100.21
external host static ip:
client = 192.168.100.15

Result files:

$ cd /usr/local/autotest/results/8-debug_user/192.168.122.1/

$ find . |grep RHS
kvm.repeatl.r6l.virtio_blk.smp2.virtio_net.RHEL.6.1.x86_64.netperf.exhost_guest/
—results/netperf-result.RHS
kvm.repeat2.r6l.virtio_blk.smp2.virtio_net.RHEL.6.1.x86_64.netperf.exhost_guest/
—results/netperf-result.RHS
kvm.repeat3.r6l.virtio_blk.smp2.virtio_net.RHEL.6.1.x86_64.netperf.exhost_guest/
—results/netperf-result.RHS

* Submit same job in another env (different packages) with same configuration

Result files:

$ cd /usr/local/autotest/results/9-debug_user/192.168.122.1/

$ find .|grep RHS
kvm.repeatl.r6l.virtio_blk.smp2.virtio_net.RHEL.6.1.x86_64.netperf.exhost_guest/
—results/netperf-result.RHS
kvm.repeat2.r6l.virtio_blk.smp2.virtio_net.RHEL.6.1.x86_64.netperf.exhost_guest/
—results/netperf-result.RHS
kvm.repeat3.r6l.virtio_blk.smp2.virtio_net.RHEL.6.1.x86_64.netperf.exhost_guest/
—results/netperf-result.RHS

6.5.4 Analysis result

Config file: perf.conf

[ntttcp]
result_file_pattern = .x